Z‘Yaglman

by Chris Jochumson, David Lubar, and Mark Pelczarski

Now Anyone caﬁ put Professional Graphics
into their own Programs . . .
penguin &
software

The Graphics Magician contains machine language animation routines that
use the same techniques as most of the popular Apple arcade games. Three
animation editors let you design your figures, their paths, and assemble
animations with up to 32 independent objects. Also included is a hi-res
picture/object builder that lets you store hundreds of 100-color pictures
on a single disk and recall them quickly from your own programs. This capa-
bility is useful in designing adventure games, educational software, and
other programs requiring a multitude of graphic images to be quickly and
easily accessible. Plus, a new shape editor greatly extends the capabilities
of Apple shape tables with multiple colors and angles that are preserved
on scaling. All design of graphics is done through menu-driven editors; to
use in your programs, just attach our machine language routines. The entire
package is designed to be easy to use for the beginning programmer, yet
flexible enough for the most advanced.

Requires a 48K Apple Il with Applesoft and a disk drive.

Apple Il is a trademark of Apple Computer, Inc.

‘The Graphics
(ITagician

By Mark Pelczarski, David Lubar, and Chris Jochumson

peng(,“nﬁ 830 4th Avenue

Geneva, IL60134

SOffware (312) 232-1984

The ‘enclosed product is supplied on a disk that is NOT copy-protected.
It is our intent to make this product as useful as possible, and we feel that with
applications software the ability to easily make your own backup copies is
a great asset. We ask that you not abuse our intentions by making copies for
others. The result of such activity only helps promote the unfortunate existing
situation of most software being protected, and, in our opinions, less usable.
We hope that commercial success of non-protected products such as this one
will signal other publishers that copy-protection is not necessary for a product’s
survival and help reverse the trend in protected applications software.

Although this policy may be more consumer oriented than most software
publishers’, do not mistake our intentions as meaning that we will not act to pro-
tect our copyrights of this manual and the programs on the enclosed disk. We
consider this package to be one of the best available, and we will take what-

~ ever action necessary to protect our legal rights. We have several mechanisms

for tracing copies and we will use them if needed. Please act conscientiously
so that we can say that such precautions were not even necessary.
We hope you find many hours of enjoyment and use in this package.

Sincerely,

,/V[M(LLJ @[czms(a

Mark Pelczarski
President, Penguin Software

.

All programs and documentation included with “The Graphics Magician” are copy-
righted, 1982, by Mark Pelczarski. No part of this product may be used in any other
product for sale without signed permission.

Apple Il is a registered trademark of Apple Computer Corporation.

Table of Contents

Overview

Backups
Licensing

Part One - The Animation Routines

Technically, How it works
How Programs use the Animation
The Four Animation Types

The Shape Editor

Creating a Shape - The Easy Way
Compiling and Saving Your Shape
Creating Shapes - More Detail

The Path Editor

Creating a Path

More Path Commands
Still More Commands
Space Saving Hints

The Animation Editor

Trying the Animation
Saving
Other Options

Animation from your Programs

Necessary Commands

Options and Tables

Path Tables - Programming Tricks
More Technical Stuff

Part Two - The Picture/Object Editor

Creating a Picture
Editing a Picture
Creating an Object

Using Pictures and Objects in Programs

Part Three - Super Shapes

Introduction

Using the Super Shape Editor
Writing on the Screen

More Menu Options

Using the Machine Language Routine

Extras

Binary File Transfer Utility
Demo
Animated Alphabet

Appendix - File Name Suffixes

117

14

16

21

27

31

32

a call or write.

Overview

The Graphics Magician has three sets of programs in it: the animation system,
the picture/object system, and the ‘“super shape” system. Each has at least
one editor associated with it, and each has machine language subroutines that
allow you to control graphics from your own programs. To fully use the routines
in The Graphics Magician you will have to do some programming of your own,
although for any of the routines this can be as simple as a three line program in
BASIC. The Graphics Magician is meant to be a programmers’ tool, giving you
the capability to create professional graphics in your own software. It is de-
signed to be easy enough to use by the beginning BASIC programmer, but it
also has a vast amount of flexibility for the most experienced machine language
programmers. The same machine language graphics routines included in this
package are being used in dozens of commercially marketed software products.

The exact applications of this package are for (1) incorporating smooth 2-
dimensional animation in programs, with multiple figures moving simultaneous-
ly and independently, (2) creating multicolored pictures and objects in a form
that allows them to be stored in minimal space, for programs requiring hundreds
of graphic images to be quickly accessible from one disk, such as adventure
games and educational products, and (3) extending the power of Apple’'s shape
table concept. If your application is more in the graphics design area than
in programming, we recommend our other two graphics products, The Complete
Graphics System and Special Effects.

In using this manual, each section contains first the basic information
necessary for using the graphics routines, then gradually covers more technical
information and suggestions for more advanced use of the software. Beginners
wandering into those sections may find parts of them a bit bewildering at
first, but once the initial use of the routines is mastered, the other pieces will fall
into place and their potential value become apparent. As with all programming,
experiment and practice...

Be sure that you do send in your registration card so that we can inform you
of any updates to the software as they occur. We have updated our past pack-
ages several times when we’ve found improvements and additions that could
be made, and your registration card is the only means through which we’ll con-
tact you about these changes. When you buy our packages, this update service
is part of what you receive automatically.

If you call with questions regarding this product, be prepared to provide the
registration number stamped on the inside cover of this manual. This is the same
number that is encoded on your master disk.

Backup Copies

All of the machine language routines in this package are accessible for use
in your programs. The entire disk may be copied with any standard copy pro-
gram. We recommend that you use a backup copy in your work instead of the
original, since you cannot write on the master disk and it is much more easy
to use a backup disk for your data files.

Licensing

Any of the routines may be freely used in your own programs. If the machine
language routines or reasonable facsimilies are included in any other product for
sale, a license must be obtained with the author of the routine through Penguin
Software. We are interested in the possibility of publishing software created
using these routines, so if you have something that may be of interest, give us

o

Part One
The Animation Routines

There are four machine language animation routines included in this package,
each giving a slightly different result. There are also three different editors used
for the animation routines: a shape editor (no relation to Apple shape tables), a
path editor, and an animation editor. The shape editor lets you design the objects
that you want to move around the screen, the path editor lets you design the
paths in which the objects wiil move, and the animation editor allows you to put
together the animation type with up to 32 objects and associated paths, creating
a block of machine language code and data that’s ready to be loaded into your
own programs. The routines can then be called for performing the animation
from any program, with a wealth of information accessible along the way.

Technically, How it works

The design of the animation system is based on the concept of ‘“‘pre-shifted
shapes’’, which is actually a descendent of character graphics. The hi-res screen
corresponds to an area of memory in the computer, and fast animation is the re-
sult of being able to store the right thing in the right location at the right time,
quickly. Character graphics involve storing a given bit pattern in a set of lo-
cation in memory. For example, the letter ‘C’ when it appears on your screen is
the result of 8 bytes of information being placed in the proper screen memory
locations. Hi-res character generators, such as the one in The Complete Graphics
System, or Synergistic Software’s Higher Text, do precisely that task. Alphabets
are stored as bit patterns, and the hi-res character generator puts those bit
patterns in the proper memory locations.

The problem with character graphics is that the basic memory unit for storage
is a byte. On the screen a byte shows as a horizontal set of seven dots (seven
bits corresponding to points being on or off, and the eighth bit as a color flag--
more on that later). Vertical movement is easy...the bytes with the dot pattern
of your figure are just moved up or down one screen row. Horizontal movement
causes a problem, though. When a byte is moved over one position, the asso-
ciated figure moves seven dots! To move in smaller increments, the bits within
the byte have to actually be shifted over a certain number of places into the
next screen location, which is time consuming and messy.

The solution is pre-shifted shapes. For every figure created, seven facsimilies
are stored as bit patterns in memory, in your shape table (remember, no rela-
tion to the shape tables Apple told you about). The bit patterns are the same,
except each one is shifted over one position with respect to the byte boundaries.
That way fast character graphics can be performed with totally flexible hori-
zontal movement. There are other speed tricks mentioned later, but this is the
basis of the truly fast and smooth animation you see in good, professional
programs. -

How Programs Use the Animation

There are a few levels used in creating the animation effects. The first is a
routine that puts a designated shape on the screen at a specified location.
The second is the real animator, a routine that handles up to 32 independent
objects and moves them along their appointed paths. Each time the animator is
called from your program, all active objects are moved one step along their paths,
location and collision information is updated, and a return is made to your pro-
gram. The simplest program using the animation routines would load the anima-
tion information, call the animator, and then loop back up a step to keep calling
the animator. To make things interesting before you loop back up, you may want
to do such things as check the keyboard or paddles, check the collision and
location tables, change paths, or activate and deactivate objects. But that’s
where your creativity comesiin...

The Four Animation Types

There are four animation routines included, each with various advantages
and disadvantages. Because of space requirements, you cannot easily mix and
match the types, so you should choose the one that best suits your needs.
The types are block move, block move with page 2 for background, draw and
save background, and XDRAW. This section describes some technical differ-
ences and should only be skimmed lightly by the beginner.

The major advantage and reason that you should usually use block moves is
that an erase cycle is not needed in that mode. A typical animation loop goes
draw-update-erase-draw-update-erase... The block move only uses draw-update-
draw-update, and so on. When shapes are created for use with the block moves,
a border the size of the maximum move must be left around the shapes. This
border should be black in most cases, although colors may be used when the
page 2 background option isn’t used. The border acts as a self-eraser, removing
the old image as the new one is put on the screen. It also eliminates flickering
that is associated with the erase cycle.

The regular block move routine will draw on page 1 or 2. The background must
be the same color as the border you leave around the shapes when you create
them, as the border becomes the background (shapes used with block move leave
a trail of their border color). An alternate block move routine lets you load in your
background scene on both page 1 and page 2. Animation is done on page 1, with
page 2 used for reconstructing the background (technically, the shape is OR'd
with page 2 before it is stored on page 1). The border of the shape in this in-
stance must be black with the high bit off. If, when drawing your shape, you
refrain totally from plotting points on your border you'll be okay. The dis-
advantages of using page 2 for background are that 8K more is taken from your
available storage, and you have more color considerations to worry about. Speed
is virtually the same in both block modes.

The other two modes of animation both require the erase cycle. “‘Draw with
béckground save” swaps a figure with the background that's on page 1, putting
the background in a buffer. Between updates, it restores the background be-
fore starting the cycle over. It is, however, a convenient way to save the back-
ground without dedicating 8K of storage to it (as in the block/background mode).
The background buffers used in the draw/background mode are 256 bytes for
each object. In the worst case, using 32 objects would consume the same 8K
required as in block/background. Every other case uses less.

25

The other method is the XDRAW routine. In principle, it works the same as
the Applesoft XDRAW command; it reverses the current status of the screen. It
uses the pre-shifted shapes as opposed to Applesoft shapes, though, and is
much faster. It does require the erase cycle, but it also preserves background
with no extra space taken.

An additional advantage of the two routines that use the erase cycle is that
a collision table can be kept of objects that hit each other. Because the block
method doesn’t erase, a shape is constantly colliding with itself, making colli-
sions with other objects impossible to detect. The block/background mode does
take advantage of the collision table to flag collisions of an object with the
background, but not with other objects. All four routines give you constant
access to actual x, y locations of objects and their positions within their de-
fined paths.

Note: with the ‘draw with background save’ animation, objects that collide
with each other will not restore the proper background in normal animation.
See the technical section for how this can be averted.

Table of Animation Types

Shabés

Flicker

Collisions

Graphics Storage

Speed

in

in

O = — — — s C=
Sie' S 6 oS T g ®
© = © Jos 5
coo08 IERORO oi=0 :
N > N > 5 T)
+~ ‘n O 5 —p O-= cOm® | =
QED S NN 2 0o 3}
() co [} foud b Ll XD =
E > ® = DO= D =
cg38 | Esek 2258 a
o e = - O o) -
m;.ec)z‘ mn—E Q=N
al=-xTg 8295 2253 <
° o = Z
ol s TS A 2 D = OlD
= C g 0 © © = (el Rowr=
o o) LT o
wWoeEos HaEDB 6 ZO0>3
) ® o ®
= c £ =
o o o o
2z Z on n
> 2 g
5 & g
o]
e = ‘E
5
S o S n o »
@ o 20 5 ©
=2 £ LS X9
° 9 © Q9 28
z o Q.0 e
5 Ecb =gl
= =L =
; ;O ;o
o 0
o~ ERS !
- = =
o = gD 5
6 © Qa () o
— =0 ¢ = W
o s -5 o
s 3. | af2s | By
@ Jo Tl 29
o2 SRS allgg 0 >
35‘ g.c wwN; 9_’5
=) U
Ix T 00 go IS
G0, T L5 EX
= =
s e
E
17 > :E; =
© ol = S
w i 5 5]
b =
- e
(=
=3 £3
=0 =i 2
X x O ()} <
o 0 X 2 X o (0
o o9 S >
- B () © ® (@]
o m m omw x

The Shape Editor

Creating a Shape - The Easy Way

To enter a shape, from the main choices select to run the shape editor. The hi-
res screen will clear, seven orange line segments will appear along with seven
flashing dots (four across the top, and three across the middle of the screen),
and the text window will display the information shown in figure 1.

The first row of information tells you what single letter commands you can
use. The next row tells you whether the high bit is on or off (more on that later),
whether you are plotting in even columns, odd columns, or all (again, more later),
and your relative x, y position within the shape.

The I, J, K, and M keys control the movement of your cursors (flashing dots)
up, left, right, and down, just as they appear on the keyboard. Why seven
cursors? Because when you are creating a shape, you are actually creating seven
separate pre-shifted versions of the same shape. Each cursor operates on one
of the seven shifts. They all move together; when you press ‘M’, all seven cursors
move down one point. But here we come to another of the tricks that can be
used in animation. You've all seen games like Super Invasion, Apple Panic, Alien
Rain, and Space Quarks, to name a few, where as the shapes move, they animate
within themselves. Legs move, eyes - shift, antennae swirl, wings flap...By
slightly modifying each of the seven shifts of a shape, you can make a man’s legs
or a bird’s wings appear to be moving in the finished product. Objects moving
vertically use the same shifted shape and won’t animate within themselves,
but any horizontal movement causes a different shift to be used, and if the shift
was modified somewhat, so will the object be. Information on editing the
various shifts appears later. For now, treat them as seven identical shapes.

As you move the cursor around, you can plot points by pressing ‘Z’, and
erase points by pressing ‘X'. If there's a large section to be plotted, ‘Q’ locks
plotting. Likewise, ‘W' locks erasing. To get out of either locked mode, press
‘Z' or ‘X, or lock in the other mode.

If you are going to use a block method of animation (skipping the erase cycle),
be sure to leave a top and left border around your object. In most cases, your
border should be 2 units wide. That would leave the point 3,3 as the upper left
corner of your figure.

If this is your first time through, go ahead and create a shape now, not worry-
ing about color or making changes within the various shifts. Leave a top and
left border of 2 points around your shape. When you get a figure that looks like
anything (a blob will do), move the cursor to the bottom right corner of your shape
(try not to leave a trail of dots as you do so). Check the x, y coordinates so you
know the width and height of your figure, and add 2 to each to allow for the
bottom and right borders. The next step is to compile the shape, so that it's
stored in memory in an animatible (is that a word?) form. Type ‘D’ for ‘tempor-
arily done’, and you’ll get a new list of choices which stand for Edit, Compile,
Animate, Save, Load, New Shape, and Menu.

IJKMZXQWHEOA1-7D
HBIT OFF ALL X:3Y:3

Figure 1- Shape Editor Text Window

&

Compiling and Saving Your Shape

To compile your shape, type ‘C’, then enter the width and height as computed
above when prompted. Shapes must be compiled before being animated or
saved. If you go back and edit the shape, you'll have to recompile it if you want
the new version kept.

IMPORTANT NOTE: Yes, there is a maximum size for your shape. The number of
bytes taken for each shift must be less than 255. (Shapes that size will take a
combined total of 1.75K of storage). To compute the number of bytes, the number
of bytes tall is the same as the height (each byte is one unit tall and seven units
wide). Thle width, in bytes, can be computed from this formula, given the width
in dots (the number you enter when compiling):

INT((W + 12)/7)

That is, take the width in dots, add twelve, divide by seven, and round it down
to the nearest integer. To find the total number of bytes for one shift, multiply
the height by the number of bytes wide. This is the number that must be less
than 255. From the way it's derived, you may notice that any height added to
a shape generally increases the memory requirements much more than additions
in width, and any additions to the width reaching the numbers 9, 16, 23, 30, 37,
44, and so on, add an entire new column of bytes. Size, by the way, does play
a significant part in speed of animation, as you will learn by experimenting.

After you've compiled your shape, you can try your first test of the animation
routines by pressing ‘A’. This does a test animation of your shape across the
bottom of the screen and back.|Paddle zero controls the speed of the object

as it moves back and forth. Note that the test animation is done in XDRAW
mode, so you'll be able to see firsthand the flicker effect caused by the erase
cycle. The reason we didn't dazzle you with the block animation mode here in
your first exposure is that we couldn’t assume that every shape you ever create
will have borders. Alas, the lack of such a border would cause unsightly paths
left behind if we didn’t use one of the erase cycles. When you get tired of watch-
ing your blob go back and forth, press a key to go back to the options. If this is
your first attempt, use the ‘S’ (save) option to save your shape on disk, then
press ‘M’ to go to the menu and skip ahead to the chapter on creating path
tables. When you press ‘M’, it will ask you to verify that you want to lose the
current shape. If you saved it to disk, you're safe, so proceed.

Creating Shapes - More Detail

Assuming you've had your first taste of the entire animation system by now,
you're probably ready to try ever more sophisticated things with shapes. There is
more. Your first shape was probably all white. Here’s where it helps to learn the
actual layout of Apple’s hi-res colors.

A byte of information stores seven dots and a color flag. There are really
only four colors (plus black) that appear on the Apple screen, and only two can
appear in any given byte, or set of seven horizontal dots. Green and violet go
together, and so do orange and blue. When the color flag (high bit) is off, dots
within a byte appear green and violet. When the high bit is on, they appear
orange and blue. Even columns of dots always show as violet or blue, and odd
columns show as green or orange. You get the appearance of white when con-

‘secutive dots are set, combining violet and green or blue and orange.

Armed with that bit of information, the answer is yes, you can have as many
colors in your shape as you want. You can draw a man with a green shirt, one
blue pant leg and one orange pant leg,with his head and hands white, and shoes
violet. The only thing that will cause you problems is trying to mix horizontally
between the two groups of colors, such as orange next to violet. Vertically, you
can do anything you want. Over larger areas, for example, alternating horizontal

v

lines of orange and green can give the appearance of yellow. By staggering
dots in different ways, effects can be created in the same way that all the ex-
tended hi-res color generators use, such as the 108-color routine in the picture
builder in this package.

The editor has a set of commands that makes the use of color easier. ‘H’
toggles the high bit; off if it was on, and on if it was off. Every byte in which a
point is plotted or erased is assigned the current high bit value. Be careful
about setting the high bit in your borders. Depending on which shift of the shape
it is, you can create some trailing problems with the block/background mode.
By avoiding plotting and erasing on your border, you'll be okay.

‘A’ sets plotting so that every point that you cross and plot with the ‘Z’ or
‘Q’ keys is turned on. ‘E’ sets plotting so that only even points are turned on,
and odd points are turned off if plotted over. This automatically gives blue or
violet, depending on the high bit. Likewise, ‘O’ sets plotting of odd points, turning
off the evens and giving orange or green. Experimenting with the shape builder,
we've found that creating your figure in white, then going back over the areas
to add color works nicely.

High bit off High bit on
Even Violet Blue
Odd Green Orange
All White White

Colors of plotted hi-res points

If you are using the block animation method without page 2 for the back-
ground, you may create your shapes so that a background other than black can
be used. Create your border area so that, instead of black, it is the color of the
background you want to use. If you wanted to animate on a blue screen, for
example, make your border area blue.

When using color, it's important to note that your shape can only be drawn
in half the available columns if color is to be preserved. If odd screen columns
are used, the shape will appear just as you drew it. If you plot your shape on
an even column, the colors will be shifted over one, so that orange and blue
reverse and green and violet reverse. This may be a nice trick to remember for
getting two differently colored shapes out of one shape definition. It is also why
the default movement with the path editor is two units, and why we recommend
the two-unit border. The path editor will allow you to specify movements of one
to three units up, down, left, or right, but horizontal movements of other than
two will change colored shapes.

To achieve movement within a shape, it is necessary to make slight modifi-
cations in the seven shifted versions of the shape. The keys 1-7 toggle plotting
on each of the shifts, 1-4 on the top row, and 5-7 on the middle row. The orange
lines above the shapes show whether plotting on that shift is on or off. To create
a sequence of a man walking, you might start with having both feet down in the
first shift, shifts 2-4 showing the left foot in stages of moving up and down, and
shifts 5-7 showing the right foot moving up and down. After 7, the first shift would
appear again.

10

Of course the sequence 1,2,3,4,5,6,7 assumes that the shape will be plotted
in that order (or in reverse order). It will, if you use the standard 2 unit move-
ments. (The actual bit shifts corresponding to 1-7 are 0,2,4,6,1,3,5). If you are
going to use horizontal increments of 1 instead of 2 (whites and blacks only),
use the following shape sequence for your animation: 1,5,2,6,3,7,4. Notice that
this corresponds to the order of the actual horizontal locations of the shape on
your editing screen (disregarding whether it's in the top or middle row). (You see,
the shapes’ are shown where they are for a reason; not just that four across
the top and three in the middle is a nice pattern...). To confuse matters just
a little more, if you want to use horizontal movements by 3’s, use the sequence
1,6,4,2,7,5,3. (there’s no nice way to put them on the screen so that all three
sequences are easy to visualize...).

5 6 7

Shape Numbers as they appear on the screen

e

The Path Editor

Once you have a shape, to animate it on the screen you have to tell it where
to go. The final animation editor allows you to set starting points for each shape,
but from that starting point the shape must have a path. A path may be as simple

as a straight line, or as complex as you like, with as many direction changes as
desired. You create a path by plotting it out on the hi-res screen with the path
editor, then you save it to disk. The animation editor allows you to integrate
shapes, paths, and the animation routines.

£

Creating a Path

Run the path editor, and you will first be asked to move to the starting point.
This starting point is for reference purposes in creating the path only. Paths
are always relative to the starting point of an object. In other words, if you
wanted 32 objects moving in circles, you would only have to create one path
in the shape of a circle, but have each object start at a different location on the
screen. An object’s starting point, however, is set in the animation editor, not
the path editor.

Figure out a good place on the screen to start your path so that you won’t
be forced off the screen with it (if you're creating a left-to-right path, for example,
don’t start at the right edge of the screen). Use the UIOJKNM, keys to move your
flashing cursor to that point. The keys move the cursor in the directions shown
in figure 2, similar to how the keys appear on the keyboard.

When your cursor is at the starting point, press ‘S’ to start your path. Again,
the UIOJKNM, keys control direction of movement. Each time you press one of
these keys, your path moves two units up, down, left, or right, or in combinations
appropriate with the chosen direction. (For example, ‘U’ corresponds to 2 units

to the left and 2 units up; whereas ‘J’ is just 2 units to the left.) If you make a

mistake, ‘D’ deletes the last move.

If this is your first time through, trace out the path of your choice on the
screen, then press ‘S’ to save it. You are ready to try your shape and path with
the animation editor, so now type ‘Q’ to quit and go back to the main menu.

Figure 2 - Key Directions

=12

More Path Commands

Any single move within a path may be up to 3 units in any direction. You
may want to use different units for varying speeds of objects or for adding more
directions (1 over and 3 up, etc.). Remember that horizontal movements of 1
or 3 will affect color (see the explanation of color in the shape editor section).
When the points of the path are drawn on the editing screen, they are either
blue or orange. Any point where a change occurs between the two colors tells
you that your object will change colors there. If your object is white, however,
it will show no effect.

To move in units other than 2’s, use the RETURN, <-, ->, and / keys, for up,
left, right, and down. These keys move the cursor one unit at a time in the de-
sired direction, but do not add to the path by themselves. When you’ve moved to
the next point along your desired path, press ‘Z’, which locks in your move and
lets you choose the next one. ‘Z’ also allows you to create a move that goes
nowhere, causing a hesitation in the animation when that point is reached.
This may be used for timing and speed controls, or for a pause in an object’s
motion. All of the direction keys may be used as needed. Just remember that
the UIOJKNM, keys plot the next point, and the RETURN, <-, -=, and / keys
require ‘Z’ for plotting.

Still More Commands

‘F’ allows you to switch to full screen graphics and back, if you need to see
the bottom of the hi-res page. ‘C’ clears the current path and allows you to start
over.

Space Saving Hints

Each move in a path gobbles up a byte of storage, so if you are creating
a lot of different paths for one program, you're going to use a good chunk of
memory. Such sacrifices have to be made occasionally for speed’s sake, but
there are a few built in space saving features in the animation editor. Each
object has a path list of up to three paths to follow in sequence, and after
the sequence you may choose to repeat the path list,end with the object drawn,
or end with object erased.

Having up to three paths gives you one way to save space. You can create
several smaller paths and combine them in various ways to make different large
paths. The other space saver is using the repeat option wisely. A straight line
left to right across the screen, for example, can be as short as one move to the
right with a repeat. A spiral movement only need be one arc of the spiral repeated,
and so on. The experienced programmer can even switch paths in and out of the
path lists, and change the repeat switch as needed. This may not be for the
weak of heart and expertise, but as you gain more experience, you'll find all of
the animation parameters fairly easy to modify while a program is running.

The Animation Editor

Once you have at least one shape and one path created you can use the
animation editor. When you run it, you'll first be asked to choose the type of
animation you want to use: block move, block move with page 2 background,
draw with background save and replace, or XDRAW. If you choose block move
or XDRAW, you will then be asked to choose page 1 or page 2. The appropriate
machine language routines will be loaded in, and you are on your way.

You are then presented with a set of options, the most important of which,
for the moment, is ‘load’. Before you do anything else, you want to load in at least
one shape and one path (more, if you want). Besides shapes and paths, you
are also allowed to load in hi-res pictures (if needed for a background) and
previously designed animation routines (for further editing). After you press ‘L’
for the load, select which of the four you want loaded, then type the name under
which it was saved. (NOTE: If a picture is loaded, the program assumes the ex-
tension of .PIC’ in keeping with the standards used in all Penguin Software
graphics products. See the appendix for more information on extensions. The pic-
ture must have a catalog name of ‘name.PIC’, although only ‘name’ should be
typed when asked in the program.)

After you've loaded in at least a shape and a path, choose to create a new
object (press ‘N’). Some terminology should be explained here. ‘Shapes’ are
the actual figures that are created .with the shape editor. ‘Objects’ consist of a

shape, its associated paths and its locations. You may have up to 32 objects

at a time with the animation routines. It is possible, however, that all 32 objects
may use the same shape (and even the same path). Think of a game, such as
‘Invaders’, where there may only be 3 or 4 kinds of oncoming creatures, but sev-
eral of each kind. Only 3 or 4 shapes need to be used, but there may be 7 or 8
objects with identical shapes moving around on the screen. Objects are the
things that move around. Shapes are what they look like.

To create a new object, you first select the shape that it should have. Shapes
are numbered zero and up, in the order in which you loaded them. One con-
venience, keeping the shape and path names accessible during use of the ani-
mation editor, had to be dropped in the final version you have due to space con-
straints. Therefore you should keep record of the names of shapes and paths
with their associated numbers (order of loading) on the side while you use the
program. If you do make a mistake and put the fuzzball where the spider was
supposed to be, don’t worry; you can go back and edit it correctly.

Next, select the numbers of the paths you want the shape to move in. You have
up to three paths to use, although you don’t have to use more than one. The last
number in your path list has a special significance. If it’s 255, it means that the
animator should loop back to the beginning of the path list and repeat. 254
means to end the animation of that object, but leave it drawn. 253 means end
the animation of that object, but finish by erasing it. As a simple example, sup-
pose path 8 is a square, and you just want that repeated. For the first path in
the list (number 0), you'd specify path 8. For the second path in the list for that
object (number 1), you'd specify 255, meaning repeat the list over.

To continue with creating an object, you next specify its starting coordinates.
Even with one shape and one path, you can create up to 32 independent objects
by assigning them each the same shape and path, but different starting, locations.
The valid range for x is 0 to 1791 and for y is 0 to 255. The visible screen range is
0 to 279 on x and 0 to 191 on y. The extra range for starting locations allows
objects to actually continue their animation while off the screen without im-
mediate wrap-around. More discussion of use of this range follows later. If the
X value is odd, your shape will appear in the color in which it was drawn. If x is even,
the colors will be reversed from those drawn.

—4:

The last part of entering an object is to give its starting location within its
path list. You may start at any part of any path in the list. First specify the number
of the path in which to start (0, 1, or 2; this is not the actual path number, but
its sequence number in the path list). Next, specify the step in the path with
which to start, for example, the 10th movement in the path. By combining vary-
ing starting coordinates of objects with appropriate variations in starting loca-
tion in a path, you can have objects follow one another in single file in your
animation. Chris used this type of arrangement in ‘Space Quarks’.

Trying/the Animation

Finally, you can see your creation. The object is done, so you can see what
it looks like animated to your specifications. Type ‘A’ from the options, and
your commands are now obeyed by the computer. Paddle zero controls the speed
of animation. Press the space bar when you are done watching, and you’ll be
returned to the options.

Saving

If you want to save the animation routine as is, type ‘S’ from the options and
the entire machine language/binary file will be saved to disk in a form that can
be used from any program. Give the animation set-up a name for saving. Two
files will actually be saved: one with the machine language routines, and one
text file with information that will be necessary if you ever want to go back and
edit that specific animation set-up. The latter would be loaded along with the
machine language routines the next time you run the animation editor and ask
to load that animation set-up. If this was your first trial run of the entire anima-
tion system, you are ready to either (a) go back and experiment some more, or
(b) try hooking the animation routine you just created into a short program of
your own. If the latter, skip ahead to that section. If the former, go ahead and
read more on any section you choose.

Other Options in the Animation Editor

You may go back and edit any object’s parameters by typing ‘E’ from the
options, specifying the number of the object to inspect and/or change, then
viewing or changing the specs for that object.

You can obtain a disk catalog from the options by typing ‘D’. All those funny
extensions you see on your file names are explained in the appendix.

‘H’ clears the hi-res screens, ‘C’ clears the entire animation set-up and allows
you to start over without re-running the program, and ‘M’ returns you to the
master menu (and also forgets your current set-up, if you haven’t saved it to
disk).

-15-

Animation from your Programs

Once you’ve used the animation editor to define the parameters for your ani-
mation, and have saved an animation file, you may easily use the animation in
your own programs. The simplest version of this would be as follows:

10 HGR

20 PRINT CHR$(4);"BLOAD name.ANM”’
30 CALL 36928

40 GOTO 30

The above example assumes using page 1 with a block animation mode. Basic-
ally, each call to 36928 updates each object one segment along its path.This
allows the programmer the greatest degree of control over the animation, be-
cause after each update any commands desired may be inserted. The collision
table and locations may be checked, paths may be changed, paddles and key-
board may be read, objects may be activated and de-activated, and so on.

The general program design using animation will be as follows:

1) Set-up

2) Call animation routine

3) Check and change parameters
4) Go back to step 2

Step 3 may be non-existent, as in the sample above, or it may consist of an
entire range of commands. The more commands there are involved in step 3, the
more reason there is to do that part in machine language, if possible. A long
string of BASIC statements in step 3 may slow things down enough to take the
smoothness out of the animation.

Necessary Commands

To use the animation, the animation file must first be loaded in your program
and the appropriate hi-res screen displayed. If you are using a background pic-
ture, that must also be loaded or drawn.

With the XDRAW and ‘draw with background’ animation types, an initial draw
of all the objects is required. This is done with a CALL 37284 (or JSR $91A4 in
machine language). This step is done before the loop, not within the loop.

With all the animation types, the statement used within a loop to update all
objects is CALL 36928 (JSR $9040 in machine language). That's the extent of
necessity in using the animation routine.

You may want to set HIMEM to protect the area of memory taken by the
binary animation file. This is especially important if you use any string var-
iables in your program. The first memory location taken by your file is given to
you while using the animation editor.

Options and Tables

Specific locations in memory are set aside for providing you with information
and a place to make changes during use of the animator. Following is a list
of those tables, their formats, and suggestions for their use.

A6

_—

_— ==

Shape Index $9380-$93FF
(starts at decimal 37760)

This is a table of pointers to the actual locations in memory of the shape in-
formation. Each pointer is 2 bytes long, and there is room for 64 pointers.
Hence, shapes may be numbered 0-63. $9380,1 holds the pointer to shape 0,
$9382-3 holds the pointer to shape 1, and so on. The pointer is an address in
lo, hi format. By changing this pointer, you can actually change the shape used
for an object in mid-animation, while keeping all the other object information
intact.

Object List $9400-$9420
(starts at decimal 37888)

This is a list of shape numbers for up to 32 objects. It is also the list that the
animator cycles through as it updates each object. Each shape number takes
one byte. If the shape number is 255 ($FF), it signifies the end of the object
list and the animator will go no further in the list in updating. If the shape num-
ber is any other number above 127 that object is considered inactive and the
animator passes it. You can deactivate an object by adding-128 to the shape
number in the object list (setting the hi-bit in machine language). To re-activate
an object, subtract 128 from the shape number in this list (or clear the hi-bit).
When all values in this table up to the first ‘255’ are set greater than 127, no
movement will occur. See the following for another way that an object may
be de-activated.

Path Locations $9440-$949F
(starts at decimal 37952)

This is a list of path locations for each object. Each entry in this list is 3
bytes long, so object 0’s information starts at $9440, object 1’s information starts
at $9443, and so on. The first byte gives the current path number in the path
list (0, 1, or 2; see path lists). The next two bytes are a pointer to the actual
memory location of the next step in the path, in lo, hi format. Upon starting, this
usually points to the memory location of the beginning of the first path. When a
path is finished and there’s no repeat used, the first byte of this three byte
entry is set greater than 127 (negative, in machine language). This setting causes
animation on this object to be skipped, and is another place where an object may
be de-activated by adding 128 to the value.

Object Locations $94A0-$94FF
(starts at decimal 38048)

This list also contains three bytes for each object. The first two bytes give
the current x location of the object, and the third byte gives the y location. The y
location is a value 0 to 255, with 0 to 191 on the screen, and the remainder (192-
255) serving as a wraparound area. An object going upward will continue off
the screen, disappear off the top for a few moments, then reappear at the bottom.
The x location is stored in a byte/bit format. The first value is the byte num-
ber across the screen in which the object appears, the second value is the bit
number (0-6) in the byte. Since the screen is only 40 bytes wide (7 bits each,
giving 280 locations), if the first value of the x location is between 0 and 39,
the object will show on the screen. The range 40-255 is the x wraparound area.

This means that if an object is moving left to right continuously, it will disappear
off the right edge of the screen, not show for a while, then reappear on the
left. It also means that an object moving in such a path would only be in the

screen area about 1/6th of that time. These wraparound areas allow you to use
a much larger ‘Space’ than that actually shown on the screen. You may have
dozens of objects animating with only a few in view, depending on which part
of this space the objects wander into. Of course you may decrease the size of
this space by changing the value of the object location whenever it goes be-
yond a certain number. Note that if an object is off the screen you may safely
change its location. If an object is on the screen and you change its location,
you may cause poblems with the erase part of the animation, which is not
performed until just before the new location is plotted.

Path Lists $9500-$95DF i
(starts at decimal 38144)

There are path lists for each of the 32 possible objects. Each list is 7 bytes
long. The first six bytes are pointers to the actual memory locations of the start
of the object’s path 0, path 1, and path 2, as specified in the animation editor. The
seventh byte is only used if three paths are actually used. After the last path,
the next byte has a flag with value of 255 for repeat, 254 for end without erasing,
and 253 for end with erasing. If there is only one path used, for example, the
third byte containes the flag. If two paths are used, the fifth byte has the flag. If
all three paths are used, the seventh byte holds the flag. Pointers to the path
memory locations are stored in hi,lo format, since the high byte will never con-
tain the possible flag viaues. Path pointers and the flag may be changed during
animation. These pointers are only used between paths. If an object is in middle
of a path, the Path Locations table will be used until the end of the path is
reached. The animation routine will then jump in and check the path list to see
what it is supposed to do next.

Collision Table $95E0- $95FF
(starts at 38368)

The collison table contains one byte for each object. This byte contains the value
zero until the corresponding object incurs a collision, at which time a non-
zero value will be put in the table. The animation routine does not reset values
to zero. Once a collision occurs, a non-zero value stays until you, the pro-
grammer, set it back to zero. This is handy in case you don’t want to check the
collision table every time through. A collision flag will remain until you are ready
for it. Remember that in the block mode the collision flag is not used, and that
in the block/background mode a collision is flagged only if it’s between an
object and the background. XDRAW and draw with background will both detect
collisions between objects.

BASIC Programs

$2000-$3FFF
(8192-16383)
Hi-res Page 1

$4000-$5FFF
(16384-24575)
memory map Hi-res Page 2

for animation
Free Space

Paths and Shapes
build down from $8F00

$8F00-$95FF
(36608-38399)
Animation Routines
and Tables

18-

Path Tables - Programming Tricks

You may want to have a path of an obj i i
' ject tied directly to paddle movement
or keystrokes. A simple way to do this is to set up a path one byte long with a
repeat. That way every movement is read directly from that byte. Affected
taples are the Path. Lists and Path Locations. The path list for the affected
object should consist of a pointer to the byte in memory being used for the
For:mentb followed by a 255, for repeating. The path location should be a 0
path number in the path list), followed by a pointer again to
L b ool p g the byte used for
Whgt does a pgth look like? Each byte signals a movement. The end of a
path is flagged with a zero. (So the above mentioned path would consist of a
changeable number followed by a zero.) The movements are divided into two

bits per direction, as shown in figure 3.

QR0 IRONOLIE 0RO MIE050
Yo X X X
Figure 3 - Path Bits

Each pair of bits can represent the numbers zero to three, signifying the num-
ber to be added or subtracted from x or y. To go up (subtract from y) 2 units
and left (add to x) 3 units, the byte would hold the following value:

1707010 07001 1
or $83,

or decimal 131.

The fgstest way to decode paddles or keyboard may be to set up a lookup
table in your program for the movement value, and transfer that value to the
path byte between each animation update.

No‘te that a value of zero ends the path. For a zero movement (pause), set all
the bits to 1, giving a value of 255 for the byte. Moving 3 units in each of,4 direc-
tions cancels all movement. Various other combinations have the same effect
such as the decimal value 5 (one unit left and one unit right). :

More Technical Stuff

Aqvanced programmers may want to bypass our animation routines totally
ft-md just use the plotting routine for drawing a shape at a given location, creat-
ing their own animation cycle and movements. Each of the four animatio’n types
has a plot routine associated with it. The routine names on disk are BLOCK
BLOCKBACK, BKGND, EOR (block, block with page 2 background, draw with’
background save, and XDRAW, respectively). ’

Each plot routine resides at $8F00-8FFF, and each must use the shape index
ta.\ble at $9380-93FF (described above). Each also uses a lookup table P1L for
hi-res page1, or P2L for hi-res page 2. The lookup table resides at $9200-9379

For each of the routines, the x byte is put in $0, the x bit in $1, and y vaI.ue in
$2. The shape number goes in $3. For BKGND, a buffer number for the saved
giakground must also be put in $4. We used our object numbers for the buffer

er. :

£10:

D return a collision value in location $0B. BLOCKBACK puts its

e i lision, any other value means a

collision value in $8FA1. Zero means no col
collision occurred.

The draw routine for each is called at location $8F00. The erase routine, except

i the draw routine performs the erase
in EOR, is called at $8FA2. For EOR, ’ > 4 -
Ifr:mction since 2 consecutive calls to it (2 XDRAt:N z) rekstorent;t:hoartlgv:/r:: Sb:vzl;

; ine for BKGND restores the backgrou
frinns R The erase routines in BLOCK and
i buffer when the shape was drawn. e
Ing]gKBACK are only used when the shapes are to.be removed tcf>tilly fI:joirrrT\‘;gg
screen. Otherwise, the borders mentioned much earlier take care of t ke oErase s
on the screen. Erase in BLOCK clears the shape area to black.

‘ the shape was.
BLOCKBACK restores the background where ha as. .
The only caution that should be heeded on collisions is in the BKIGIt\lhIZz3 m::Vee
When two objects coI|ide, for the background to be returned propgrsy ¥his 0
to be erased in reverse order. (i.e. Draw 1-?-3, erase 3-2-1, draw 1-2- w|s)h iy
NOT done in the animation routines in this package, but you may

this option if needed in your application.

Part Two
Picture/Object Editor

This part of the Graphics Magician allows you to create pictures and objects
in a form so that they can be saved in an amazingly small amount of space.
It uses a technique many of you may have seen used in various graphic ad-
venture games. Instead of an actual screen image being stored, which takes over
8000 bytes for each picture,the moves taken in creating a picture are stored.
Where a standard picture takes 34 sectors on a disk, pictures created in this
manner take 2 or 3 sectors, with the most complex taking perhaps 5. It is this
type of savings and storage that allows programmers to store literally hun-
dreds of pictures on a single diskette.

This technique can be applied to anything from adventure games to edu-
cational software; any program that would benefit from being able to store screen
pictures and shapes in as little space as possible. All that is added to your
program is the machine language subroutine provided on this disk that decodes
your picture and recreates it in your program. It's as simple as a BLOAD,
2 POKE’s, and a CALL.

The concept of saving the moves is one thing. The other is to allow useful
moves. We've taken parts of our other graphics packages, The Complete
Graphics System and Special Effects, and adapted them as we saw fit toward
this application. More or less could have been included, but usefullness has
to be balanced with length. We chose to use the line routine from the Apple-
soft ROM (same as the language card version), an improved 100-color fill
routine from The Complete Graphics System, and a slimmed down paintbrush
routine from Special Effects (108 colors, but only 8 brushes as opposed to the
original 96). Generally, a picture will start as a white background, lines will be
added in black defining enclosed areas, the fill routine will be used to add
colors to the various enclosed sections, and the paintbrushes will be used to
smooth transitions and add details. This sequence is not carved in stone; the
only limiting factor is that the fill routine must be used on a white area en-
closed by black boundaries or the edge of the screen.

Creating a Picture

As opposed to most picture creation packages, sequence and strategy may
be important. Every move you use in creating your picture will be saved.
Hence, the fewer moves used, the less space your picture will require. (Don’t
get too paranoid over every move used. Do several practice pictures without
worrying about byte counting to see how much space is taken, then if you
find you have to make them more compact decide where you want to save
the moves.) The other factor, although it may not be important in your appli--
cation, is that when a picture is redrawn by the machine language routine
(very quickly), it is drawn in the same steps in which you drew it (mistakes and
all, if you leave them in). It gives the impression of a super-fast artist laying
out the screen.

When you run the picture editor, you'll be shown yourloptiogrs]datr;r;?j:osgm
i i t x,y location, colors, 7
of the screen, including your curren Sl o
j i | the ‘+ ' cursor on the screen. en y .
joystick or paddles contro ‘ . st e Yo
i t for a line. Pressing butto
button 1, you set a new starting poin : il
il h, depending on your mode.
fills the current area, or plots the brush, : : L§ it
i i i ine before you draw it. Otherwise
set a starting point for the first line ‘ i g
i i i final creation, most likely creating a bi S.
point will be used in your ' : . il s
i de, with fill color 0 (white),
When you start, you are in line mode, ’ . M
i directly to Apple’s hi-res color
4 (black). Line colors correspond . . sl
i alette that is available while y
below). The fill colors are show on a p . L
i i ‘P’ to see the palette. An important pol ' :
using the editor. Type ‘P _ | i b
h of which does not mix we
three color groups on the palette, eac : bl e
i i full explanation of Apple hi .
horizontally with the other two. (For a . : sl
i i imation section of this manual.) g
see the section on shapes In the anima . i ol
i i tically next to each other (one
will not affect one another if placed ver e
i more than one color group, you
other). We recommend that if you use n C et A
i i i 4). Within each zone, stay
our screen in horizontal zones (see figure)
\éne of the groups; this will prevent horizontal interference between the groups.

0 Blackl 4 Black2
1 Green 5 Orange
2 Violet 6 Blue

3 Whitel 7 White2

Apples Hi-res Colors

You'll notice 3 whites on the palette.
and each marks the beginning of the next color group. Several other colors

appear in at least two of the groups, allowing you to give thega?xia;ai?fzfezz
i i hile in fact you are usin
a color crossing a zone vertically, w : : ;
i A consists of colors 0 throug
constructions of the same color. Color group sl
i h 76, plus the standard Apple
1. Color group B consists of 52 throug ; .
iolors 4-7g(for lines). Color group C has colors 77 through 107, along with

Apple hi-res colors 0-3.

Colors from group B

Colors from group A

Colors from group C

Figure 4 - Example of Using Zones

.22-

Each is actually different intern ally,

Following are the drawing commands:
L - Sets line mode. Button 0 draws lines, and button 1 sets new starting points.

F - Sets fill mode. To fill an area with the current color, move the cursor into
an enclosed area and press button 0. For most efficient filling, position the
cursor so that it is somewhere in a direct line below the highest point in the
enclosure. The fill routine uses an averaging method that minimizes the num-
ber of tries necessary to fill a complete enclosure, yet: still maintains a very
good speed;,

1 through 8 - Selects the corresponding brush. 1 through 6 are small through
large, and 7 and 8 give ‘airbrush’ affects. Button 0 sets the brush down for one
plot. Since every move takes space, you must repeatedly plot the brush; it
does not stay down.

C - Selects a new color for automatic filling and brushes. The range for colors
is 0 through 107, as shown on the pallete. The palette is first displayed. Decide
which color you want, then press any key to get to the text mode and type in
the number of your color.

K - Selects a new line color. The range is 0 through 7, the standard Apple
hi-res colors. Note that colors other than black will usually not suffice for
borders of areas to be filled. Since the other four colors (blue, violet, orange,
and green) have only half the resolution, the fill routine may ‘leak’ through
borders of those colors.

P - Displays the color palette for filling and brushes.

J - Reverses the joystick orientation if your joystick does not correspond
properly to up/down and left/right. If you are using a joystick, you may want to
remove any self-centering springs to make drawing easier.

ESC - Switches display between full screen graphics and mixed text and graphics.

Z - Zeroes in on the area near the cursor, allowing better control in small
spaces. ‘Z’ acts as a toggle between standard and zeroed in modes, and is used
to switch to the mode not currently in use.

The above commands are those that allow you to create pictures. The ones
below let you edit, reconstruct, and save what you’ve done:

D -Deletes the last move. This can be used repetitively to delete several moves.

R - Reconstructs the picture at machine language speed, so you can see the
end result as it will appear in your programs.

S - Saves the picture as is. You give it a name, and it will be saved as a coded
binary file of the moves needed to reconstruct your drawing.

E - Edit mode. This allows you to go in and make changes in any of the steps
used in creating your picture. You may add detail in places, change colors,
delete steps, and so on. The following section describes edit mode in detail.

Q -Quit. You may choose to start a new picture, or return to the main menu.

Editing a Picture

The edit mode clears the screen and allows you to single-step through the
instructions you used to create the picture. At any point, you may delete an
instruction, back up an instruction, or insert instructions.

Pressing the space bar causes the next instruction in your picture file to be
performed, and displays in words what that instruction is. You may single-step
through the entire picture using the space bar.

To backward step, press the left arrow key (<:). This actually clears the screen
and re-executes all the instructions up to the one before the current one
displayed. /

‘D’ deletes the instruction currently displayed, backing up and reconstruct-
ing all the previous ones.

‘I’ lets you insert instructions immediately after the one displayed. Insert mode:
looks just like the regular drawing mode, except the reconstruct and save op-
tions aren’t available, and ‘E’ returns you to where you were in normal edit
mode. ‘

‘F’ means that you are finished with edit mode, finishes drawing the picture
up to the last instruction, and puts you back into normal drawing mode.

Creating an Object

You may want to have pictures that optionally have varying items shown.
Again, the classic example is with an adventure game where certain items may
or may not appear in a room at any given time. The first thought you may
have is to use an Apple shape table for such objects. The problem is that Apple
shapes take quite a bit of storage relative to their size and are limited in color.
Using the picture/object editor, you can create objects in exactly the same way
that you create pictures. The display routine that you attach to your program
has two entry points. One erases the screen and draws an entire picture. The
other takes x and y coordinates and locates the ‘picture’ at the given offset on
top of an existing picture, giving you what is essentially a multicolored object
that can be located anywhere on any picture.

There are two differences you should use when creating something that will
be treated like an object instead of a picture. First, the first command in creating
the figure MUST be a ‘Start Line at’ command. This is done by locating the
cursor somewhere on the screen and pressing button 1. The dummy ‘start line’
command is actually interpreted later as a ‘start object at’ command that gives
every other point in the object a relative location. When you later put the object
at some x, y location on another picture, the X, y location you give will be where
the starting point of your obiect will go. Keep that in mind, so you can prevent
your objects from going off the screen when in use. Note that this is a dummy
‘start line at’ command. You need a second ‘start line’ command for any lines
you use.

The other difference in creating an object is that you cannot assume that
you'll be starting with a white background, since the object usually will be put
on top of another picture. That means that the fill command shouldn’t be used
in an object, unless you can provide an assured white background. That may
be done by first laying down a white background with a large, white brush.
Usually it will be just as convenient to use colored brushes to draw the object
directly. Choose your color usage wisely. Try to arrange your pictures so that
objects created from color group A will go on a background zone created from
group A, and so on. It is possible to get good results without this consideration,
but if you want to be assured of the cleanest, most professional look, take the
time to match your colors well.

-24-

Using Pictures and Objects in Your Programs

On i i
i ;?oé?:n:: c;ﬁf]te:g a set of pictures and objects, you can use them in your
e e machine language program PICDRAW. Your program
A M ii anguage or BASIC. The picture and object files can be
ikl ore memory, with the starting location sent to the PICDRAW
ore it is called. PICDRAW will draw to either page 1 or page 2, which-

ev?l;:s the cur.rent hi-res page being used by your program.
Currez?r:ifr::mg note: location $E6, 230 in decimal, contains the pointer to the
puen .s page. A value of $20, or 32 decimal, points to page 1. $40, or 64
automat,icr;?;msTto page 2. From BASIC, HGR and HGR2 change' this’ value
prarli toy. o secretly dra}w on one page while the other is displayed, it’s
s o); pa;seezacle\:vt:OEE s. If page 1 is being displayed, use POKE 23,0 64
: ; e drawing routines, then use POKE -16299,0 =l
;F)%ge 2. If page 2 is being displayed, use POKE 230,32 to draw on el
KE -16300,0 to display page 1.) , el
Th i
3839;:-) \AS/I'L:itZ;rI?Li':r;?]e I?(I)(;D()F:Aa\/\\llailisb?s memory locations $8E00-$95FF (36352-
. : e memory in a 48K Appl i
o pple with DOS |
(12323888423%?;) re':sigi?eata$i00(t))-$3FFF- (8192-16383) and page 2 takes $4000-§2[d:?=dF.
. nd object files should generall
i b i y be loaded so
S:gxled tS:eh; rZTMp;,ae you a\red using and below the PICDRAW rout?r:(ZVVhYe«:JrlEJ3
command to protect the to :
- : p area of mem
SIC variables. You may even want to set HIMEM to 8192, if yot?:yprf(;cg;rrgnir});

short. It is also a good idea
to work out a m
S0 you know where everything is located. bl ol B

To put PICDRAW on your disk, do the following:
1) Putin the Graphics Magician disk and type BLOAD PICDRAW.
2) Putin yourdisk and type:
BSAVE PICDRAW,A$8E00,L$800

In your program, if in BASIC, use the command:

PRINT CHR$(4);“BLOAD PICDRAW”’

When you’ve decided where t i j
e o load your picture or object file, use the BASIC

PRINT CHR$(4);"‘BLOAD name.SPC,Axxxx"

where xxxx is the location you chose. (24576, decimal, works fine for starters)

Wi 3 : ;
ith either a picture or an object, before calling the PICDRAW routine you

must tell it the location of the pi i
' picture file. ion i i
iable L, for example, use the commands: i e

POKE 36352, L-INT(L/256)*256
POKE 36353,INT(L/256)

From machine language, put the starting location in $8E00-8E01 in lo,hi format.

If your file is a picture, all you do then is use the command:

CALL 36400

displayed, you'll see the picture recreated when this

If the hi-res page is being AT

command is executed. From machine language, us
as an object, you must also tell the routine where

ilei reated : :
o Ll i creen x,y locations with the following commands:
; /

to put the object. Give itthes

POKE 36354,X-(X>255)*256
POKE 36355,X >255
POKE 36356,Y

j t fall
is 0-191. The object, when drawn, mus
has a range 0-279, and y is 0-19 . . ;
::tei::l;within the gcreen area. From machine Ianguage, thEeO: coordinate goe
in $8E02-8E03 in lo,hi format, and the y coordinate goes in $8 .

1. This skips erasing of the screen, and

To draw the object, use CALL 3636 fi fptenly

takes care of adding the offsets. From machine language, us

i i in a

If offsets are inconvenient, and objects W||.| always ap.pearhoptnt?r;zlth?nu:he

certain place on the screen, you may use a trick by creating t i Oc,lt\LL L
location you will always want it. Then, when you go to draw it,

: : : lipag.
(or JSR $8E35). This is actually the picture draw routine with the erasing skippe

isti i d
hence it draws the object as if it were a picture on top of the existing picture, an

x,y offsets needn’t be POKE'd in.

Part Three
Super Shapes

Introduction

Super Shape Tables are an extension of Applesoft shapes, allowing internal
control of color and scale and compact storage of large shapes. The major ad-
vantage of this technique is the ability to store a large number of shapes (or an
entire scene) in RAM, and the ability to rotate or scale each shape. The dis-
advantage is lower speed due to the way Applesoft handles shape tables.

In general, a shape table is a series of vectors, each of which contains a com-
mand to plot or not plot, and a direction to move. Super shape tables inter-
face between you and the Applesoft routines, passing on changes in scale,
rotation, and color. There are two programs in this module. The super shape
editor allows the user to define shapes, individually or in tables, and view
these shapes. The display routine is a short machine-language program that
interprets the tables and puts shapes on the screen.

Using the Super Shape Editor
The editor menu offers the following options:

Write on the screen
View a shape

Position a shape from a table
Recall a shape from disk
Append to current shape
Erase screen

Change shape location
Load shape table

Save shape table to disk
Get disk catalog

Delete shape

Quit

A shape is a table entry containing color, scale, plotting, and other informa-
tion. The shape stores exactly what is drawn on the screen. When a shape is
viewed, it is drawn in the same location where it was created. When you desire
to see the shape in another screen location, use the Position option. As an
example, a scene of a room would probably be drawn in the same place it was
originally created. On the other hand, an airplane or rocket would be drawn at
various screen locations. Let’s step through the menu options.

D7

Write on screen

This is the part where all the action is. When you select this option, you will
first be asked : SCALE? This determines the number of points in each line
segment you draw. A scale of 1 results in a line of 1 point, a scale of 2 gives you
a line of 2 points, and so on. The allowable range is 1 to 255. Proper use of
scale results in very compact tables. For instance, suppose you want to draw
a small object inside a square border. A square with sides 20 points in length
can be drawn using a line of scale 20. Since the data for each line occupies
only one byte (plus a few exrtra bytes whenever a‘new color, scale, or location
is selected), this is a massive saving over the 40 bytes an Applesoft shape table

would require.

The next question is COLOR? Your input will determine the color of the shape.
The range is 0 through 7 (standard Applesoft colors), and the selected color will be
used until a change is requested.

Once a color has been selected, a line the size you selected will appear. Note
that the selected drawing color will not be seen yet. However, since certain colors
can’t be drawn at certain locations on the Apple’s screen (see the section on
colors in part one), the message “basepoint visible” or “basepoint invisible” will
appear, depending on whether the bottom point of the line will be visible when
drawn in the desired color. Using the paddles, move this line to the desired start-
ing location, then press button 0. Paddle 0 now controls the rotation of the line.
The larger the scale, the more possible angles. When you are ready to create the
shape, press button 0 again. The line will begin moving in a direction controlled
by paddle 0. Pressing the button again puts you back in the previous mode,
stopping the motion and allowing a new rotation, color, or scale to be selected.
Another press continues the drawing action.

Whenever you stop drawing by pressing button 0, you have these seven addi-
tional options: COLOR, SCALE, LOCATION, FINISH, BACKUP, ONESTEP, and
VIEWING SCALE. These commands are accessed by pressing their first letter
or, in the case of viewing scale, a number from one to nine.

COLOR allows you to change color while maintaining scale and location.
Similarly, SCALE changes only that parameter.

LOCATION puts you back in the mode where the line position can be moved
with both paddles. Again, you go on from there by pressing button 0.

VIEWING SCALE controls the size at which your shape is being displayed.
For instance, when using a small scale, you can press 4 and see the shape at
four times its actual size. Pressing 1 causes the display to return to actual size.
With values from 2 to 9 the shape is still being created in the original scale,
but the display is magnified. Note that the allowable rotations are determined
by the actual scale, not the display scale.

BACKUP deletes the most recent move, and can be repeated all the way
back to the start of the shape. If the most recent move was the drawing of a
segment, that segment will be erased. If the move was a scale or color change,
that change will be deleted from the shape. This option gives you the flexi-
bility to experiment with different colors and scales while not making any ir-
reparable errors.

ONESTEP allows accurate control for complex shapes. Each press of button
0 adds a segment to the shape. Between segments, a new rotation can be
selected with the paddle, but the segment won’t be added until the button is
pressed.

FINISH ends the shape. From there, you will be given several options. The
first question is SAVE IT? Answering “Y” will result in the shape being placed
on disk. Once on disk, it can be appended to an existing shape (more on that

.28-

e

Iaante;)r,lsovr\l:rddefzq‘tYo”a tgble at an_y time. The second question is ADD TO TABLE?
sl ki c?s e will result in the shape being added to the current table'
ply i the shape won’t be added to the table. Note that contrar);

to the standard Applesoft sha
pes, super sh i
although they can be put in tables alsop. g e il

More Menu Options

adg:tittl?g t?‘zctl;é?etir;emn;ain me:;,PgECALL takes a single shape from disk and
: mory. ND adds to the last sh i i
: ape in the table.
;it:]vermratt:;/;:gshh?é):d\i/vzs m%st recently drawn or recalled. Appending is psss:rigll:
‘ ng a shape from disk or by drawin
. : . g on the screen.
ﬁr?:nnc;ed frgm disk will appear in the same place it was originallny 2r22?epde
il t;;pggt ltr;g t:ufsshatpet:y drawing on the screen, you can use the BACKUF;
. or to the end of the old shape. This all
: : ows
po\r/tllg\rlwvtolbe stored relative to the starting location of the original S;gzeappended
T ?rs:rjste;es;z:jﬁn, thhen draws the desired shape in the Iocatié)n it was
5 ies shape number and a speed f i
the speed value, the faster the d i . e
. , rawing appears. This effect can be us

:I:andwntten S|gQature on the screen at pen speed or in any ochr ?d tto -

:(r)estlhe user desires the shape to appear at a reduced speed Vi
Specme'glgN a(ljlows theishape to be drawn anywhere on the écreen. The user
i off;:amt .y location, shapg number, and scale and rotation offsets. The
sl ;3 ls.added to the original shape, rotating all elements. If a éha e
degreez a:r ?fwnh an upward move (rot=0), a rot offset of 8 will rotate it 25
i) Cre;tedow.f::t otf 16 will rotate it 90 degrees, and so on. If the entire shape

ithout any new location parameters, th . i
together. If new locations were u ithi e
sed within the shape, or if APPE
o : : ; ND wa
apgznsdugshgdpe w.|II rotate on its own (as mentioned before, using backj u\?v?tdh
e Shm\:?c; l;seth(ljs(:. c'jrhe scale offset tells how many times the scale of 2 seg
added to itself. If a segment has .
of 1 is used, that segment will b i e e
: : e drawn with a scal

i eof 3+3,0r6. A

2 will produce a scale of 3+3+3, or 9. In other words, an offset c?f c1>ffv?/(ielt|

produce a shape twice the origi i
‘ ginal size, a i
Sheeilat R il e il n offset of 2 will produce a shape 3

SALV%A&EQ;SS: ttatt))lle into memory and allows additional shapes to be added
AT ORI t: e oq disk. QELETE removes a shape from the table.
kg s the startling location of a shape to be changed. For exampl :

you want to append a disk shape to an existing shape, but the new shapg leS

in the wro g ocatio t can be oved, saved to d sk, and then a
3
’ v 1 ppe ded to

Using the Machine Language Routine

The machine language routine is named SST/ML. To put it on your own disk

rst use BLOAD SST/NV L with the aste dISk, insert you S 9} SA
; . Yy 5 e ype B VE

Sh;gee g:asiﬁlgaggrvovgram htalls two entry points. Entering at the top results in the
exactly as it was created. In this case, th
; . i , the user n
Ipout s.hape number in location 253 ($FD) and the starting page of theetidblon"y
cTatlon 254 ($FE), then call the start of the routine. i
he routine is relocatable, and can be put at any free location. It cur

rently loads at 16384 ($4000), but shoul i
S), should be loaded elsewhere if you want to use
290

To use the full shape routine, nine parameters are needed. Though all must
be set initially, some will maintain their value until changed, and thus needn’t
be reentered for each draw. The entry point is 16 ($10) bytes beyond the start
of the routine. If the code is loaded at 16384 ($4000), the entry would be at

16400 ($4010).

The parameters are:
xlo at 249 ($F9)
xhi at 250 ($FA)
y at251(3FB)
*rotation offset at 252 ($FC)
*shape number at 253 ($FD)
*table page at 254 ($FE)
*color switch at 255 ($FF)
*delay at 4 ($04)
*gcale offset at 5 ($05)

(Starred locations maintain their value between calls to the machine routine.
Others must be set before a call.)

XLO is the lo byte of the x coordinate. This can be found from basic with
XLO = X —256*(X<255). In other words, when the x coordinate is less than 256,
the lo byte and the x coordinate have the same value. If x is greater than 255,
the low byte is equal to x — 256. :

XHI is the hi byte of x. From basic, use XHI = (X>255). If the X coordinate is
greater than 255, the hi byte is 1, otherwise, itis 0.

Y is the y coordinate

ROTATION OFFSET is added to the rotation of each shape element. To draw
the shape at the original rotation, use an offset of 0. As with Applesoft tables,
a rotation of 8 is 45 degrees, 16 is 90 degrees, and so on. If the value goes past
64, it cycles mod 64. thus 65is equal to 1, 66 is equal to 2, etc.

SHAPE NUMBER is the number of the desired shape in the table

TABLE PAGE is the hi byte of the shape table (the table must be loaded in on
a page boundary). Page boundaries are multiples of 256. A table loaded at 1024
(4*256) would have a page number of 4.

COLOR SWITCH allows the shape to be drawn entirely in one color, rather than
the color or colors stored in the shape. If the switch is 0, the original colors are
used. If the value is 1 (or any other non-zero value), the color will be the one
used in the most recent Applesoft HCOLOR command. The most common use for
this would be to erase a shape by setting HCOLOR to black (color 0 or 4).

DELAY sets the delay time between segments of the shape. This is used for
special effects as mentioned above. The minimum delay is achieved with a value
of 1. With values from 2 to 255, the delay increases. 0 gives the maximum
delay. Note that while the creation program uses higher numbers for higher
speeds, the machine routine accesses the monitor delay routine, and thus

higher numbers give longer delays.

SCALE OFFSET adds the scale of each segment in the shape to itself that many
times. A setting of 0 uses the original scales. A value of 1 doubles the size of
the shape, 2 triples it, and so on.

To increase speed in special applications, options such as delay can be re-
moved from the drawing program. The delay code is located from $40DD to
$40E1. To speed up the code, just place $EA in these locations.

-30-

Extras

Binary File Transfer Utility

tral::fllejgi?ngpy tf?IZSGfraphics N(!jagician disk is a program that lets you easily
rom one disk to another. Along the i
the starting address and length (in deci . : b o
; ecimal and hexadecimal) of each file. Y
may wish to use this routine just for checki i kb
. : . ng starting addresse
of binary files, as that information isn’t easily available ngormally i
g SY:rniJerscch)i;:i?:Sargtr(‘L) 1oad, (S) save, (C) catalog, and (Q) quit. You may load
without saving, just to check the address i i
: . nf
you save a file, the most recent one loaded is the one saved. R e

Given the binary length of files su
. ' ch as the sequential pictures (.SPC
can change their loading addresses with the following commands (tr({e ex;’my;:

uses a file named HOUSE.SPC, wi i
1 , with a length of 387 bytes, and a desired loading

BLOAD HOUSE.PIC,A24800
BSAVE HOUSE.PIC,A24800,L387

Subsequent BLOADIng of the file will automatically start at 24800.

Demo

fm/?ndt(re];nons'tration of various features of the Graphics Magician can be run

main menu. Since it is designed as a self-o i -

’ & ting, repeating d

you’ll have to press RESET to end it. T perating, rep g demo,
: . . To get back to the mai i

re-booting, type ‘RUN N’ (or as we do for short, ‘RUNN?). i

Animated Alphabet

alr@;sdoylgzl:igi:dazsa bonu: fondthe Graphics Magician is an animated alphabet

pre-shifted shapes, ready to use in th i i i

(or modify with the shape editor). Ea i L o
: . ch letter is stored under i

CATALOG your disk for a complete file listing. »

Appendix

Suffixes on File Names

Throughout our graphics products, we've managed to create quite a few dif-
ferent types of graphic data files. Almost every one of these files is coded in
binary, making them impossible to identify in type by looking only at the name
given to them. To simplify matters, we’ve written every program so that a suffix
is automatically added to each name you give a file, identifying the type of
file. You NEVER use that suffix from one of our programs. The only time you
see it is when you CATALOG a disk, and the only time you use it is from a pro-
gram other than one of ours.

Example: While using The Complete Graphics System, you name a standard pic-
ture file ‘HOUSE'. On disk, it would appear as ‘HOUSE.PIC’, but from any other
program of ours, you would still refer to it as a picture named ‘HOUSE'. When
a picture is expected, ‘ PIC’ is assumed automatically.

This greatly simplifies the task of remembering the origin of the files stored
on a disk, but it also has caused quite an accumulation of suffixes. Here’s a list
of each and what it stands for:
.ANM Animation Table

Graphics Magician - animation

ENT Character Font
Complete Graphics System

.PAK Packed Picture File
Special Effects

.PIC Standard format screen picture
All Penguin Software packages

JPIH Path Table
Graphics Magician - animation

SHE Apple Shape Table
Complete Graphics System

SPC Sequential Picture
Graphics Magician - from picture/object editor

.SS SuperShape
Graphics Magician - supershape editor

SSH Shifted Shape
Graphics Magician - animation

SSil SuperShape Table
Graphics Magician - supershape editor

D) 3-D File
Complete Graphics System

ST Animation Text File
Graphics Magician - animation

1901

